Genomic Responses to Abnormal Gene Dosage: The X Chromosome Improved on a Common Strategy
نویسندگان
چکیده
Mechanisms to guard genomic integrity are critical to ensuring the welfare and survival of an organism. Disruptions of genomic integrity can result in aneuploidy, a large-scale genomic imbalance caused by either extra or missing whole chromosomes (chromosomal aneuploidy) or chromosome segments (segmental aneuploidy). A change in dosage of a single gene may not compromise the well-being of an organism, but the combined altered dosage of many genes due to aneuploidy disturbs the overall balance of gene expression networks, resulting in decreased fitness and mortality [1,2]. Chromosomal aneuploidy is a common cause of birth defects—Down syndrome is caused by an extra copy of Chromosome 21, and Turner syndrome by a single copy of the X chromosome in females. Furthermore, methods that detect segmental aneuploidy have uncovered small deletions or duplications of the genome in association with many disorders, such as mental retardation. Chromosomal and segmental aneuploidies are also frequent in cancer cells in which changes in copy number paradoxically increase cell fitness but are unfavorable to survival of the organism. A fundamental issue in biology and medicine is to understand the effects of aneuploidy on gene expression and the mechanisms that alleviate aneuploidy-induced imbalance of the genome. Chromosomal aneuploidy is caused by non-disjunction of chromosomes in meiosis or mitosis, while segmental aneuploidy involves breakage and ligation of DNA. In contrast, the sex chromosomes provide an example of a naturally occurring ‘‘aneuploidy’’ caused by the evolution of a specific set of chromosomes for sex determination that often differ in their copy number between males and females. For example, in mammals and in flies, females have two X chromosomes and males have one X chromosome and a Y chromosome, resulting in X monosomy in males. How does a cell or an organism respond to such different types of aneuploidy, abnormal or natural? It turns out that the overall expression level of a given gene is not necessarily in direct relation to the copy number. Unique strategies have evolved to deal with abnormal gene dosage to alleviate the effects of aneuploidy by dampening changes in expression levels. What’s more, the X chromosome has evolved sophisticated mechanisms to achieve complete dosage compensation, not surprisingly, since the copy number difference between males and females has been evolving for a long time.
منابع مشابه
P-237: Elucidation The Role of Chromosomal Aberrations in Ovarian Reserve: A Retrospective Clinical Report
Background: Constitutional chromosome abnormalities are among the major contributors to the genetic causes of reproductive disorders. Despite all of worldwide efforts have been made so far, the prognosis for mosaic X chromosome aberration below 30% of unemployed has yet to be established. The purpose of this study was to assess the quantity and quiddity of chromosomal aberrations that may negat...
متن کاملInm-7: Genetic Etiologies of Premature Ovarian Failure
Premature Ovarian Failure (POF) defined as functional stop of ovaries before the age of 40. It is a common cause of infertility in women that characterized by primary or secondary amenorrhea, high gonadotropin levels and estrogen level declining in patients. Factors that reduce follicle or defect in the follicle growth stimulating mechanism defined as numerous complication factors that they can...
متن کاملMicroduplication of Xp22.31 and MECP2 Pathogenic Variant in a Girl with Rett Syndrome: A Case Report
Rett syndrome (RS) is a neurodevelopmental infantile disease characterized by an early normal psychomotor development followed by a regression in the acquisition of normal developmental stages. In the majority of cases, it leads to a sporadic mutation in the MECP2 gene, which is located on the X chromosome. However, this syndrome has also been associated with microdeletions, gene translocations...
متن کامل-
The homeobox genes are known to play a crucial role in controlling the development of multicellular organisms. The majority of these genes have been determined to express regulatory proteins act as a regulatory protein. These trans-acting factors regulate the expression of proteins that are necessary during the developmental processes throughout the body. TGIFLX/Y is a homeobox gene and it cont...
متن کاملX Chromosome Inactivation in Opioid Addicted Women
Introduction: X chromosome inactivation (XCI) is a process during which one of the two X chromosomes in female human is silenced leading to equal gene expression with males who have only one X chromosome. Here we have investigated XCI ratio in females with opioid addiction to see whether XCI skewness in women could be a risk factor for opioid addiction. Methods: 30 adult females meeting DS...
متن کامل